Die einfachsten trigonometrischen Sündengleichungen. Die einfachsten trigonometrischen Gleichungen

Der Videokurs „Get an A“ beinhaltet alle notwendigen Themen, um das Einheitliche Staatsexamen in Mathematik mit 60-65 Punkten erfolgreich zu bestehen. Vollständig alle Aufgaben 1-13 des Profileinheitlichen Staatsexamens in Mathematik. Auch zum Bestehen der Grundprüfung in Mathematik geeignet. Wenn Sie das Einheitliche Staatsexamen mit 90-100 Punkten bestehen möchten, müssen Sie Teil 1 in 30 Minuten und ohne Fehler lösen!

Vorbereitungskurs für das Einheitliche Staatsexamen für die Klassen 10-11 sowie für Lehrer. Alles, was Sie zum Lösen von Teil 1 des Einheitlichen Staatsexamens in Mathematik (die ersten 12 Aufgaben) und Problem 13 (Trigonometrie) benötigen. Und das sind mehr als 70 Punkte beim Einheitlichen Staatsexamen, auf die weder ein 100-Punkte-Student noch ein Geisteswissenschaftler verzichten können.

Die ganze nötige Theorie. Schnelle Wege Lösungen, Fallstricke und Geheimnisse des Einheitlichen Staatsexamens. Alle aktuellen Aufgaben von Teil 1 aus der FIPI Task Bank wurden analysiert. Der Kurs entspricht vollständig den Anforderungen des Einheitlichen Staatsexamens 2018.

Der Kurs umfasst 5 große Themen zu je 2,5 Stunden. Jedes Thema wird von Grund auf einfach und klar vermittelt.

Hunderte von Aufgaben zum Einheitlichen Staatsexamen. Textaufgaben und Wahrscheinlichkeitstheorie. Einfache und leicht zu merkende Algorithmen zur Lösung von Problemen. Geometrie. Theorie, Referenzmaterial, Analyse aller Arten von Aufgaben des Einheitlichen Staatsexamens. Stereometrie. Knifflige Lösungen, nützliche Spickzettel, Entwicklung des räumlichen Vorstellungsvermögens. Trigonometrie von Grund auf bis zum Problem 13. Verstehen statt pauken. Klare Erklärungen komplexer Konzepte. Algebra. Wurzeln, Potenzen und Logarithmen, Funktion und Ableitung. Eine Grundlage zur Lösung komplexer Probleme von Teil 2 des Einheitlichen Staatsexamens.

Sie können eine detaillierte Lösung Ihres Problems bestellen!!!

Eine Gleichheit, die eine Unbekannte unter dem Vorzeichen einer trigonometrischen Funktion („sin x, cos x, tan x“ oder „ctg x“) enthält, wird als trigonometrische Gleichung bezeichnet, und ihre Formeln werden wir weiter betrachten.

Die einfachsten Gleichungen sind „sin x=a, cos x=a, tg x=a, ctg x=a“, wobei „x“ der zu findende Winkel und „a“ eine beliebige Zahl ist. Schreiben wir die Grundformeln für jede von ihnen auf.

1. Gleichung „sin x=a“.

Für `|a|>1` gibt es keine Lösungen.

Wenn `|a| \leq 1` hat unendlich viele Lösungen.

Wurzelformel: `x=(-1)^n arcsin a + \pi n, n \in Z`

2. Gleichung „cos x=a“.

Für „|a|>1“ – wie im Fall des Sinus – gibt es keine Lösungen unter reellen Zahlen.

Wenn `|a| \leq 1` hat unendlich viele Lösungen.

Wurzelformel: `x=\pm arccos a + 2\pi n, n \in Z`

Sonderfälle für Sinus und Cosinus in Diagrammen.

3. Gleichung „tg x=a“.

Hat unendlich viele Lösungen für alle Werte von „a“.

Wurzelformel: `x=arctg a + \pi n, n \in Z`

4. Gleichung „ctg x=a“.

Es gibt auch unendlich viele Lösungen für alle Werte von „a“.

Wurzelformel: `x=arcctg a + \pi n, n \in Z`

Formeln für die Wurzeln trigonometrischer Gleichungen in der Tabelle

Für Sinus:
Für Kosinus:
Für Tangens und Kotangens:
Formeln zum Lösen von Gleichungen mit inversen trigonometrischen Funktionen:

Methoden zur Lösung trigonometrischer Gleichungen

Das Lösen einer trigonometrischen Gleichung besteht aus zwei Schritten:

  • mit Hilfe der Umwandlung in das Einfachste;
  • Lösen Sie die einfachste Gleichung, die Sie mit den oben beschriebenen Wurzelformeln und Tabellen erhalten haben.

Schauen wir uns die wichtigsten Lösungsmethoden anhand von Beispielen an.

Algebraische Methode.

Bei dieser Methode wird eine Variable ersetzt und durch eine Gleichheit ersetzt.

Beispiel. Lösen Sie die Gleichung: „2cos^2(x+\frac \pi 6)-3sin(\frac \pi 3 - x)+1=0“.

`2cos^2(x+\frac \pi 6)-3cos(x+\frac \pi 6)+1=0`,

Ersetzen Sie: `cos(x+\frac \pi 6)=y`, dann `2y^2-3y+1=0`,

Wir finden die Wurzeln: `y_1=1, y_2=1/2`, woraus zwei Fälle folgen:

1. `cos(x+\frac \pi 6)=1`, `x+\frac \pi 6=2\pi n`, `x_1=-\frac \pi 6+2\pi n`.

2. `cos(x+\frac \pi 6)=1/2`, `x+\frac \pi 6=\pm arccos 1/2+2\pi n`, `x_2=\pm \frac \pi 3- \frac \pi 6+2\pi n`.

Antwort: `x_1=-\frac \pi 6+2\pi n`, `x_2=\pm \frac \pi 3-\frac \pi 6+2\pi n`.

Faktorisierung.

Beispiel. Lösen Sie die Gleichung: „sin x+cos x=1“.

Lösung. Verschieben wir alle Terme der Gleichheit nach links: „sin x+cos x-1=0“. Mit transformieren und faktorisieren wir die linke Seite:

„sin x — 2sin^2 x/2=0“,

`2sin x/2 cos x/2-2sin^2 x/2=0`,

`2sin x/2 (cos x/2-sin x/2)=0`,

  1. `sin x/2 =0`, `x/2 =\pi n`, `x_1=2\pi n`.
  2. `cos x/2-sin x/2=0`, `tg x/2=1`, `x/2=arctg 1+ \pi n`, `x/2=\pi/4+ \pi n` , `x_2=\pi/2+ 2\pi n`.

Antwort: „x_1=2\pi n“, „x_2=\pi/2+ 2\pi n“.

Reduktion auf eine homogene Gleichung

Zuerst müssen Sie diese trigonometrische Gleichung auf eine von zwei Formen reduzieren:

„a sin x+b cos x=0“ (homogene Gleichung ersten Grades) oder „a sin^2 x + b sin x cos x +c cos^2 x=0“ (homogene Gleichung zweiten Grades).

Teilen Sie dann beide Teile durch „cos x \ne 0“ – für den ersten Fall, und durch „cos^2 x \ne 0“ – für den zweiten. Wir erhalten Gleichungen für „tg x“: „a tg x+b=0“ und „a tg^2 x + b tg x +c =0“, die mit bekannten Methoden gelöst werden müssen.

Beispiel. Lösen Sie die Gleichung: „2 sin^2 x+sin x cos x - cos^2 x=1“.

Lösung. Schreiben wir die rechte Seite als „1=sin^2 x+cos^2 x“:

`2 sin^2 x+sin x cos x — cos^2 x=` `sin^2 x+cos^2 x`,

`2 sin^2 x+sin x cos x — cos^2 x -` ` sin^2 x — cos^2 x=0`

`sin^2 x+sin x cos x — 2 cos^2 x=0`.

Dies ist eine homogene trigonometrische Gleichung zweiten Grades, wir teilen ihre linke und rechte Seite durch „cos^2 x \ne 0“, wir erhalten:

`\frac (sin^2 x)(cos^2 x)+\frac(sin x cos x)(cos^2 x) — \frac(2 cos^2 x)(cos^2 x)=0`

`tg^2 x+tg x — 2=0`. Lassen Sie uns den Ersatz „tg x=t“ einführen, was zu „t^2 + t - 2=0“ führt. Die Wurzeln dieser Gleichung sind „t_1=-2“ und „t_2=1“. Dann:

  1. `tg x=-2`, `x_1=arctg (-2)+\pi n`, `n \in Z`
  2. `tg x=1`, `x=arctg 1+\pi n`, `x_2=\pi/4+\pi n`, ` n \in Z`.

Antwort. `x_1=arctg (-2)+\pi n`, `n \in Z`, `x_2=\pi/4+\pi n`, `n \in Z`.

Gehen Sie zur halben Ecke

Beispiel. Lösen Sie die Gleichung: „11 sin x – 2 cos x = 10“.

Lösung. Wenden wir die Doppelwinkelformeln an, was zu Folgendem führt: `22 sin (x/2) cos (x/2) -` `2 cos^2 x/2 + 2 sin^2 x/2=` `10 sin^2 x /2 +10 cos^2 x/2`

`4 tg^2 x/2 — 11 tg x/2 +6=0`

Unter Anwendung der oben beschriebenen algebraischen Methode erhalten wir:

  1. `tg x/2=2`, `x_1=2 arctg 2+2\pi n`, `n \in Z`,
  2. `tg x/2=3/4`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

Antwort. `x_1=2 arctg 2+2\pi n, n \in Z`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

Einführung des Hilfswinkels

In der trigonometrischen Gleichung „a sin x + b cos x =c“, wobei a,b,c Koeffizienten sind und x eine Variable ist, dividieren Sie beide Seiten durch „sqrt (a^2+b^2)“:

`\frac a(sqrt (a^2+b^2)) sin x +` `\frac b(sqrt (a^2+b^2)) cos x =` `\frac c(sqrt (a^2 ) +b^2))`.

Die Koeffizienten auf der linken Seite haben die Eigenschaften von Sinus und Cosinus, nämlich dass die Summe ihrer Quadrate gleich 1 ist und ihre Module nicht größer als 1 sind. Bezeichnen wir sie wie folgt: `\frac a(sqrt (a^2 +b^2))=cos \varphi` , ` \frac b(sqrt (a^2+b^2)) =sin \varphi`, `\frac c(sqrt (a^2+b^2)) =C`, dann:

`cos \varphi sin x + sin \varphi cos x =C`.

Schauen wir uns das folgende Beispiel genauer an:

Beispiel. Lösen Sie die Gleichung: „3 sin x+4 cos x=2“.

Lösung. Teilen Sie beide Seiten der Gleichheit durch „sqrt (3^2+4^2)“, wir erhalten:

`\frac (3 sin x) (sqrt (3^2+4^2))+` `\frac(4 cos x)(sqrt (3^2+4^2))=` `\frac 2(sqrt (3^2+4^2))`

„3/5 sin x+4/5 cos x=2/5“.

Bezeichnen wir „3/5 = cos \varphi“, „4/5=sin \varphi“. Da „sin \varphi>0“, „cos \varphi>0“ ist, nehmen wir „\varphi=arcsin 4/5“ als Hilfswinkel. Dann schreiben wir unsere Gleichheit in der Form:

`cos \varphi sin x+sin \varphi cos x=2/5`

Wenn wir die Formel für die Winkelsumme für den Sinus anwenden, schreiben wir unsere Gleichheit in der folgenden Form:

`sin (x+\varphi)=2/5`,

`x+\varphi=(-1)^n arcsin 2/5+ \pi n`, `n \in Z`,

`x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

Antwort. `x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

Bruchrationale trigonometrische Gleichungen

Dabei handelt es sich um Gleichungen mit Brüchen, deren Zähler und Nenner trigonometrische Funktionen enthalten.

Beispiel. Löse die Gleichung. `\frac (sin x)(1+cos x)=1-cos x`.

Lösung. Multiplizieren und dividieren Sie die rechte Seite der Gleichheit durch „(1+cos x)“. Als Ergebnis erhalten wir:

`\frac (sin x)(1+cos x)=` `\frac ((1-cos x)(1+cos x))(1+cos x)`

`\frac (sin x)(1+cos x)=` `\frac (1-cos^2 x)(1+cos x)`

`\frac (sin x)(1+cos x)=` `\frac (sin^2 x)(1+cos x)`

`\frac (sin x)(1+cos x)-` `\frac (sin^2 x)(1+cos x)=0`

`\frac (sin x-sin^2 x)(1+cos x)=0`

Wenn man bedenkt, dass der Nenner nicht gleich Null sein kann, erhalten wir „1+cos x \ne 0“, „cos x \ne -1“, „x \ne \pi+2\pi n, n \in Z“.

Setzen wir den Zähler des Bruchs mit Null gleich: „sin x-sin^2 x=0“, „sin x(1-sin x)=0“. Dann ist „sin x=0“ oder „1-sin x=0“.

  1. `sin x=0`, `x=\pi n`, `n \in Z`
  2. `1-sin x=0`, `sin x=-1`, `x=\pi /2+2\pi n, n \in Z`.

Vorausgesetzt, dass „x \ne \pi+2\pi n, n \in Z“, sind die Lösungen „x=2\pi n, n \in Z“ und „x=\pi /2+2\pi n“. , `n \in Z`.

Antwort. `x=2\pi n`, `n \in Z`, `x=\pi /2+2\pi n`, `n \in Z`.

Trigonometrie und insbesondere trigonometrische Gleichungen werden in fast allen Bereichen der Geometrie, Physik und Technik verwendet. Das Studium beginnt in der 10. Klasse, es gibt immer Aufgaben für das Einheitliche Staatsexamen, also versuchen Sie, sich alle Formeln der trigonometrischen Gleichungen zu merken – sie werden Ihnen auf jeden Fall nützlich sein!

Sie müssen sie jedoch nicht einmal auswendig lernen, die Hauptsache ist, das Wesentliche zu verstehen und daraus ableiten zu können. Es ist nicht so schwierig, wie es scheint. Überzeugen Sie sich selbst, indem Sie sich das Video ansehen.

Die Wahrung Ihrer Privatsphäre ist uns wichtig. Aus diesem Grund haben wir eine Datenschutzrichtlinie entwickelt, die beschreibt, wie wir Ihre Daten verwenden und speichern. Bitte lesen Sie unsere Datenschutzpraktiken durch und teilen Sie uns mit, wenn Sie Fragen haben.

Erhebung und Nutzung personenbezogener Daten

Unter personenbezogenen Daten versteht man Daten, die dazu genutzt werden können, eine bestimmte Person zu identifizieren oder mit ihr in Kontakt zu treten.

Sie können jederzeit um die Angabe Ihrer persönlichen Daten gebeten werden, wenn Sie mit uns Kontakt aufnehmen.

Nachfolgend finden Sie einige Beispiele für die Arten personenbezogener Daten, die wir möglicherweise sammeln, und wie wir diese Informationen verwenden können.

Welche personenbezogenen Daten erfassen wir:

  • Wenn Sie auf der Website eine Bewerbung einreichen, erfassen wir möglicherweise verschiedene Informationen, einschließlich Ihres Namens, Ihrer Telefonnummer, Ihrer E-Mail-Adresse usw.

Wie wir Ihre persönlichen Daten verwenden:

  • Die von uns erfassten personenbezogenen Daten ermöglichen es uns, Sie mit einzigartigen Angeboten, Werbeaktionen und anderen Veranstaltungen sowie bevorstehenden Veranstaltungen zu kontaktieren.
  • Von Zeit zu Zeit können wir Ihre persönlichen Daten verwenden, um wichtige Mitteilungen und Mitteilungen zu versenden.
  • Wir können personenbezogene Daten auch für interne Zwecke verwenden, beispielsweise zur Durchführung von Audits, Datenanalysen und verschiedenen Forschungsarbeiten, um die von uns bereitgestellten Dienste zu verbessern und Ihnen Empfehlungen zu unseren Diensten zu geben.
  • Wenn Sie an einer Verlosung, einem Wettbewerb oder einer ähnlichen Aktion teilnehmen, können wir die von Ihnen bereitgestellten Informationen zur Verwaltung solcher Programme verwenden.

Weitergabe von Informationen an Dritte

Wir geben die von Ihnen erhaltenen Informationen nicht an Dritte weiter.

Ausnahmen:

  • Wenn es erforderlich ist – in Übereinstimmung mit dem Gesetz, dem Gerichtsverfahren, in Gerichtsverfahren und/oder auf der Grundlage öffentlicher Anfragen oder Anfragen von Regierungsbehörden im Hoheitsgebiet der Russischen Föderation – Ihre personenbezogenen Daten offenzulegen. Wir können auch Informationen über Sie offenlegen, wenn wir zu dem Schluss kommen, dass eine solche Offenlegung aus Sicherheits-, Strafverfolgungs- oder anderen Gründen von öffentlicher Bedeutung notwendig oder angemessen ist.
  • Im Falle einer Umstrukturierung, Fusion oder eines Verkaufs können wir die von uns erfassten personenbezogenen Daten an den jeweiligen Nachfolger-Dritten weitergeben.

Schutz personenbezogener Daten

Wir treffen Vorkehrungen – einschließlich administrativer, technischer und physischer –, um Ihre persönlichen Daten vor Verlust, Diebstahl und Missbrauch sowie vor unbefugtem Zugriff, Offenlegung, Änderung und Zerstörung zu schützen.

Respektieren Sie Ihre Privatsphäre auf Unternehmensebene

Um sicherzustellen, dass Ihre persönlichen Daten sicher sind, kommunizieren wir Datenschutz- und Sicherheitsstandards an unsere Mitarbeiter und setzen Datenschutzpraktiken strikt durch.

Die einfachsten trigonometrischen Gleichungen sind die Gleichungen

Cos (x) = a, sin (x) = a, tg (x) = a, ctg (x) =a

Gleichung cos(x) = a

Erklärung und Begründung

  1. Die Wurzeln der Gleichung cosx = a. Wann | ein | > 1 hat die Gleichung keine Wurzeln, da | cosx |< 1 для любого x (прямая y = а при а >1 oder bei a< -1 не пересекает график функцииy = cosx).

Lass | ein |< 1. Тогда прямая у = а пересекает график функции

y = cos x. Auf dem Intervall nimmt die Funktion y = cos x von 1 auf -1 ab. Aber eine abnehmende Funktion nimmt jeden ihrer Werte nur an einem Punkt ihres Definitionsbereichs an, daher hat die Gleichung cos x = a nur eine Wurzel in diesem Intervall, die per Definition des Arkuskosinus gleich ist: x 1 = arccos a (und für diesen Wurzelcos x = A).

Der Kosinus ist eine gerade Funktion, also im Intervall [-n; 0] die Gleichung cos x = und hat auch nur eine Wurzel – die Zahl gegenüber x 1, also

x 2 = -arccos a.

Somit ist im Intervall [-n; p] (Länge 2p) Gleichung cos x = a mit | ein |< 1 имеет только корни x = ±arccos а.

Die Funktion y = cos x ist periodisch mit einer Periode von 2n, daher unterscheiden sich alle anderen Wurzeln von denen, die um 2n (n € Z) gefunden werden. Wir erhalten die folgende Formel für die Wurzeln der Gleichung cos x = a wenn

x = ±arccos a + 2pp, n £ Z.

  1. Sonderfälle der Lösung der Gleichung cosx = a.

Es ist nützlich, sich spezielle Notationen für die Wurzeln der Gleichung cos x = a zu merken, wenn

a = 0, a = -1, a = 1, was leicht unter Verwendung des Einheitskreises als Referenz ermittelt werden kann.

Da der Kosinus gleich der Abszisse des entsprechenden Punktes des Einheitskreises ist, erhalten wir, dass cos x = 0 genau dann ist, wenn der entsprechende Punkt des Einheitskreises Punkt A oder Punkt B ist.

Ebenso gilt cos x = 1 genau dann, wenn der entsprechende Punkt des Einheitskreises Punkt C ist, also

x = 2πп, k € Z.

Auch cos x = -1 genau dann, wenn der entsprechende Punkt des Einheitskreises Punkt D ist, also x = n + 2n,

Gleichung sin(x) = a

Erklärung und Begründung

  1. Die Wurzeln der Gleichung sinx = a. Wann | ein | > 1 hat die Gleichung keine Wurzeln, da | sinx |< 1 для любого x (прямая y = а на рисунке при а >1 oder bei a< -1 не пересекает график функции y = sinx).

Die wichtigsten Methoden zum Lösen trigonometrischer Gleichungen sind: Reduzieren der Gleichungen auf die einfachste Form (unter Verwendung trigonometrischer Formeln), Einführen neuer Variablen und Faktorisieren. Schauen wir uns ihre Verwendung anhand von Beispielen an. Achten Sie auf das Format beim Schreiben von Lösungen für trigonometrische Gleichungen.

Eine notwendige Voraussetzung für die erfolgreiche Lösung trigonometrischer Gleichungen ist die Kenntnis trigonometrischer Formeln (Thema 13 der Arbeit 6).

Beispiele.

1. Gleichungen auf das Einfachste reduziert.

1) Lösen Sie die Gleichung

Lösung:

Antwort:

2) Finden Sie die Wurzeln der Gleichung

(sinx + cosx) 2 = 1 – sinxcosx, zum Segment gehörend.

Lösung:

Antwort:

2. Gleichungen, die sich auf quadratisch reduzieren lassen.

1) Lösen Sie die Gleichung 2 sin 2 x – cosx –1 = 0.

Lösung: Mit der Formel sin 2 x = 1 – cos 2 x erhalten wir

Antwort:

2) Lösen Sie die Gleichung cos 2x = 1 + 4 cosx.

Lösung: Mit der Formel cos 2x = 2 cos 2 x – 1 erhalten wir

Antwort:

3) Lösen Sie die Gleichung tgx – 2ctgx + 1 = 0

Lösung:

Antwort:

3. Homogene Gleichungen

1) Lösen Sie die Gleichung 2sinx – 3cosx = 0

Lösung: Sei cosx = 0, dann ist 2sinx = 0 und sinx = 0 – ein Widerspruch zur Tatsache, dass sin 2 x + cos 2 x = 1. Das bedeutet cosx ≠ 0 und wir können die Gleichung durch cosx dividieren. Wir bekommen

Antwort:

2) Lösen Sie die Gleichung 1 + 7 cos 2 x = 3 sin 2x

Lösung:

Wir verwenden die Formeln 1 = sin 2 x + cos 2 x und sin 2x = 2 sinxcosx, wir erhalten

sin 2 x + cos 2 x + 7cos 2 x = 6sinxcosx
sin 2 x – 6sinxcosx+ 8cos 2 x = 0

Sei cosx = 0, dann ist sin 2 x = 0 und sinx = 0 – ein Widerspruch zu der Tatsache, dass sin 2 x + cos 2 x = 1.
Das bedeutet cosx ≠ 0 und wir können die Gleichung durch cos 2 x dividieren . Wir bekommen

tg 2 x – 6 tgx + 8 = 0
Bezeichnen wir tgx = y
y 2 – 6 y + 8 = 0
y 1 = 4; y2=2
a) tgx = 4, x= arctan4 + 2 k, k
b) tgx = 2, x= arctan2 + 2 k, k .

Antwort: arctg4 + 2 k, arctan2 + 2 k, k

4. Gleichungen der Form A sinx + B cosx = s, s≠ 0.

1) Lösen Sie die Gleichung.

Lösung:

Antwort:

5. Durch Faktorisierung gelöste Gleichungen.

1) Lösen Sie die Gleichung sin2x – sinx = 0.

Wurzel der Gleichung F (X) = φ ( X) kann nur als Zahl 0 dienen. Überprüfen wir Folgendes:

cos 0 = 0 + 1 – die Gleichheit ist wahr.

Die Zahl 0 ist die einzige Wurzel dieser Gleichung.

Antwort: 0.



Aktie: